
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12!1

VMs
I Have Known

and/or
Loved

!
A subjective history

Mario Wolczko
 
Architect 
Virtual Machine Research Group 
Oracle Labs
!
http://labs.oracle.com

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!3

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and practices
at any time, and the development, release, and timing of any features or
functionality described in connection with any Oracle product or service remains
at the sole discretion of Oracle. Any views expressed in this presentation are
my own and do not necessarily reflect the views of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!4

Overview

! Aims of this talk: entertain, educate, stimulate
! How? By talking about the VMs I’ve worked on/with, and

what I learned from them:
– Smalltalk-80: Blue Book, PS, MUSHROOM (1984–1993)
– Self (1993–’96)
– JVMs: Exact VM, HotSpot, MaxineVM (1996–present)
– Truffle, Graal and the Alphabet Soup (2010–)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!5

Caveats

! Not a scholarly treatise - a personal view of the
landscape out my window

! Mostly not my work but that of those around me
– Credit where it’s due
– Errors and omissions, are, of course, my own

! Intro and structure lifted from ICOOOLPS 2011 talk; one
conclusion recanted

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!6

Personal history

1981 '11'84 1993 '96 2000 '99'87 '04

Sm
al
lta
lk

 in
te

rp
re

te
r

Pa
rc
Pl
ac
e

Sm
al

lta
lk

M
us

hr
oo

m
 p

ro
je

ct

(S
m

al
lta

lk
 m

ac
hi

ne
)

O
pt
im
iz
in
g

ST
80

 c
om

pi
le

r

Ad
ap
tiv
e

op
tim

iz
at

io
n

Pr
ot
ot
yp
es

Ex
ac

t V
M

KV
M H
W

 fo
r J

av
a

H
W

pe

rfo
rm

an
ce

m

on
ito

rin
g

H
ot
Sp
ot

M
ax

in
e

VM

Po
rtm

ei
rio

n
- V

M
 fo

r I
SA

GC
Sm

al
lta

lk
 in

 S
el

f
 in

cl
ud

es
: s

el
f

PE
P Kl
ei

n
VM

2013

Al
ph

ab
et

 S
ou

p

academia industry

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!7

1984‒1993
!
Smalltalk  

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM
! Had never used or even seen a running 

Smalltalk system

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM
! Had never used or even seen a running 

Smalltalk system
! Studied the “Blue Book” to learn Smalltalk,  

and understand the VM spec

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM
! Had never used or even seen a running 

Smalltalk system
! Studied the “Blue Book” to learn Smalltalk,  

and understand the VM spec
! Implemented in ~10KLOC C

– coding began July 2, first successful bring-up on Jan 14, 1985

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM
! Had never used or even seen a running 

Smalltalk system
! Studied the “Blue Book” to learn Smalltalk,  

and understand the VM spec
! Implemented in ~10KLOC C

– coding began July 2, first successful bring-up on Jan 14, 1985
! Demo

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!8

1984: Implementing the
Smalltalk Blue Book VM
! Had never used or even seen a running 

Smalltalk system
! Studied the “Blue Book” to learn Smalltalk,  

and understand the VM spec
! Implemented in ~10KLOC C

– coding began July 2, first successful bring-up on Jan 14, 1985
! Demo
! In retrospect:

– A nice project for a student
– My C code was awful
– No better demonstration of Moore’s Law over  

30 years
! Perq 1 was inadequate (only 1MB RAM)
! Used VAX 11/750+remote graphics (over  

RS-232!), Apollo and finally Perq 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Smalltalk-80
An improvement over its successors

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Smalltalk-80

! Smalltalk-80 was an artifact from the future
– Had been using paper tapes, teletypes and punched cards 3–5 years

before
– 9600baud terminals were the norm; PCs and Macs had just appeared.

The bitmapped display presented a megapixel at 30Hz

An improvement over its successors

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Smalltalk-80

! Smalltalk-80 was an artifact from the future
– Had been using paper tapes, teletypes and punched cards 3–5 years

before
– 9600baud terminals were the norm; PCs and Macs had just appeared.

The bitmapped display presented a megapixel at 30Hz
! Demonstrated the power of virtualization

– Implement a simple thing, get a complex thing
– Virtual images transcend time and space

! We see the same screen as someone at PARC on a spring morning
in 1983

An improvement over its successors

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!9

Smalltalk-80

! Smalltalk-80 was an artifact from the future
– Had been using paper tapes, teletypes and punched cards 3–5 years

before
– 9600baud terminals were the norm; PCs and Macs had just appeared.

The bitmapped display presented a megapixel at 30Hz
! Demonstrated the power of virtualization

– Implement a simple thing, get a complex thing
– Virtual images transcend time and space

! We see the same screen as someone at PARC on a spring morning
in 1983

! “Meta-circular” definition — precise, concise

An improvement over its successors

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!10

Main Lesson: Bytecode interpretation is slow

!Simple, but slow—2500 bytecode/s
!Even in microcode
– Perq projected speed: 50kbps (6MHz CPU, 1.5MHz

RAM)
– Dorado: 400kbps@16MHz

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!11

Why so slow? 1. Bytecode dispatch

! Interpreter loop overhead; unpredictable branches on modern h/w
for (;;) {  
 BYTE b = getNextBytecode();  
 switch (b) {  
 case A: ...  
 case B: ...  
 ...  
 }  
}"

! Various threading tricks can make it a few times faster
! But, still fundamentally inefficient

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Why so slow?

• To execute: c = a + b. “a=2, b=2” 
 b1 = getNextBytecode(); /* push a */  
 switch (b1) ...  
 fetch variable a and push onto stack  
 b2 = getNextBytecode(); /* push b */  
 switch (b2) ...  
 fetch variable b and push onto stack  
 b3 = getNextBytecode(); /* send + */  
 switch (b3) ...  
 send + to a with arg b /* next slide */  
 b4 = getNextBytecode(); /* pop and store into c */  
 switch (b4) ...  
 pop the top of stack and store in variable c  

!12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Why so slow? 2. Method dispatch

• Consider the execution of a simple expression, a+b,
in a dynamic language:"
• Find out the type of a
• Find out the type of b
• Find out what + means
• Check that the operation is applicable to the data

types, throw error if not
• Prepare the data (e.g, strip tags)
• Invoke the operation
• Convert the result to canonical form (add tags)

!13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!14

C code for SmallInteger +
 SIGNED intArg, intRcvr;
 int intRes;
 OOP argOop= popStack;
 if (isInt(argOop)) {
 intArg= intVal(argOop);
 OOP rcvrOop= popStack;
 if (isInt(rcvrOop)) {
 intRcvr= intVal(rcvrOop);
 intRes= intRcvr + intArg;
 if (isIntVal(intRes)) {
 NRpush(intObj(intRes));
 return FALSE;
 }
 }
 unPop(2);
 } else
 unPop(1);
 return TRUE;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!14

C code for SmallInteger +
 SIGNED intArg, intRcvr;
 int intRes;
 OOP argOop= popStack;
 if (isInt(argOop)) {
 intArg= intVal(argOop);
 OOP rcvrOop= popStack;
 if (isInt(rcvrOop)) {
 intRcvr= intVal(rcvrOop);
 intRes= intRcvr + intArg;
 if (isIntVal(intRes)) {
 NRpush(intObj(intRes));
 return FALSE;
 }
 }
 unPop(2);
 } else
 unPop(1);
 return TRUE;

 SIGNED intArg, intRcvr;
 int intRes;
 OOP argOop= *sp--;
 if (argOop & 0x80000000) {
 intArg= argOop & 0x7fffffff;
 OOP rcvrOop= *sp;
 if (rcvrOop & 0x80000000) {
 intRcvr= rcvrOop & 0x7fffffff;
 intRes= intRcvr + intArg;
 if (intRes <= 0x3fffffff && intRes >= (-1<<30)) {
 *sp= intRes | 0x80000000;
 return FALSE;
 }
 }
 sp += 2;
 } else
 sp++;
 return TRUE;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!15

...Confirmed many times...

! “there was little hope for performance high enough to lure users
away from traditional programming systems”

– Joseph R. Falcone,  
The Analysis of the Smalltalk-80 System at Hewlett-Packard

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!16

1986–1993: ParcPlace Smalltalk

! Landmark paper:  
 
 
 
 

– Appeared in POPL 1984
– Major contributions:

! Just-in-time compilation for an OO language
! Inlining caching of method invocation targets

– and:
! Change of representation of contexts
! Deutsch-Bobrow reference counting

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!17

Using ParcPlace Smalltalk

! I used—practically lived in—ParcPlace Smalltalk 
for ~5 years.

– Sun 3/50, SPARCstation 1
! Rock-solid—I never encountered a VM bug
! Predictably performant

– 20x faster than the Blue Book VM
– Typically 5x slower than C code
– But I found Smalltalk perhaps 10x more productive for my research

! Large increase in implementation complexity
– Beyond a student project
– First version in 68000 assembler, later in C

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!18

1993‒1996
!
Self
!
The complexity of speed

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!19

The Self VM

! Self: like Smalltalk, only more so
! Even harder to make fast:

– Variable accesses are via messages
– Every control structure is implemented using blocks (closures)
– Prototypes, not classes
– Minimalist bytecode set

! Generational GC (Ungar)—problem solved?
! Craig Chambers’ compiler

– Heroic efforts at optimization, but unpredictable
! Urs Hölzle’s compiler

– Observation beats speculation
– Count activations, observe messages and gather type info
– Compile (or recompile) when you have a hot loop
– Used the profile info to guide the compiler
– Speculate that the past is a good predictor of the future

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!20

My Self experiences

! I joined in mid-’93—project ended 2 years later
! System was already fast

– How fast? 1/3-1/2 C, sometimes faster (eg inlined recursive calls)
– But had rough edges (GC, code quality, bugs)
– Debugging via C++ debugger (gdb) was painful - wrong level of

abstraction for many tasks
– Careful use of C++ was a big improvement on C, even absent a C++

IDE
! oop/map hierarchy -- OO in the VM

– Duplicated functionality in different forms
! E.g., GC barrier in C++ code, in emitted code (2 compilers)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!21

1996‒
!
Java VMs
!
From research to production
 

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!22

Java features that changed the game

! Primitive types—no tagging
! Built-in control flow, lack of closures—easier to compile
! Dynamic class loading, but not reflective program change

– Later: Misha Dmitriev’s implementation of class redefinition
! Concurrency
! Awful bytecode design
! 1.0 VM: BlueBook-ish; conservative GC; “green” threads
! PEP - Java on Self (Agesen, with support from Ungar, me)

– Demonstrated dynamic compilation and adaptive optimization for Java
– Fast

! Considered—for a moment—converting the Self VM to Java
– Didn’t know about HotSpot

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!23

1996–1999: The Exact VM

! Java 1.2 JVM for Solaris on SPARC and x86
! Derived from the “Classic” JVM (1.0, 1.1)

– “Exactified” (Agesen, Detlefs)
! Initial goal was to provide PS-like performance, robustness for desktop and

server workloads, for a limited lifetime (HotSpot acquisition in process)
– Concurrency was important—Sun was selling lots of multiprocessor servers
– Solaris thread support was good (!)

! Generational GC—but what about old space pauses?
! GC framework (Heller, White, Garthwaite, Flood)

– Lots of GC research, leading to CMS, G1
– Solaris threads were not so great after all — totally redone later by Roger

Faulkner
! JIT compilation—awful bytecode design
! Later, basis of CVM (Sun’s J2ME CDC JVM: Kindle v1, BluRay)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!24

1996–present: The HotSpot VM

! A start-up, Animorphic, founded in 1994 to build a high-performance
Smalltalk VM starting from Self 3.0

– Lars Bak and Urs Hölzle from the Self team, among others
! Neatly pivoted to Java
! Acquired by Sun
! Interpreter + compiler (rewritten later to become client compiler)
! Server compiler added

– Much more sophisticated than predecessors
– Click, Vick, Paleczny—the Rice compiler gurus—joined in 1997

! Still very much alive and in the lead
! Full-scale industrial development

– Cast of >100 over the last 20 years?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!25

2007–2013: The Maxine VM

! Started by Bernd Mathiske
! Influences from Klein (Self in Self), Jikes (Java in Java)
! Goal: make a fast but much more malleable VM
! Snippets—high-level description of intrinsic
! Inspector—VM-level abstractions for debugging and visualization
! Developed in Java IDE
! Compilers: CPS, C1X, Graal

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!26

2011‒present
!
Dynamic Languages
(again)  

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!27

Recanting what I said at ICOOOLPS 2011

! VMs could be made fast, 
but at great effort and 
expense

! It didn’t look there were 
any big new ideas to be 
found, just lots of work to be done

! Boy, was I wrong

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!28

Relative speeds of various languages
(as measured by the Computer Language Benchmarks Game, ~1y ago)

3

1

10

100

1000

mean

slowdown
(smaller is better)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!29

Building fast VMs is a lot of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

1m 1y 10y 100y
Effort (person-years)

Speed

Optimizing compiler

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!29

Building fast VMs is a lot of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

1m 1y 10y 100y
Effort (person-years)

Speed

Optimizing compiler

most
scripting

languages

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!29

Building fast VMs is a lot of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

Speed

Optimizing compiler

most
scripting

languages

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!29

Building fast VMs is a lot of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

Speed

10 100 1000
KLOC

Optimizing compiler

most
scripting

languages

Click to edit Master text styles

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The language designer’s dilemma

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

In C/C++
Still using AST interpreter
Spend a lot of time implementing runtime system, GC, …

Define a bytecode format and write bytecode interpreter

Write a JIT compiler
Improve the garbage collector

!30

Hire a big team of implementors to build an optimizing VM

Current situation

Prototype a new language

Write a “real” VM

People start using it

People complain about performance

Performance is still bad

Massive adoption

Click to edit Master text styles

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The language designer’s dilemma

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

In C/C++
Still using AST interpreter
Spend a lot of time implementing runtime system, GC, …

Define a bytecode format and write bytecode interpreter

Write a JIT compiler
Improve the garbage collector

!30

Hire a big team of implementors to build an optimizing VM

Most give up here

Current situation

Prototype a new language

Write a “real” VM

People start using it

People complain about performance

Performance is still bad

Massive adoption

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!31

Why not reuse a compiler from another
language?

! Glue on a different front end
– PEP, Smalltalk in Self, Smalltalk-to-Eiffel, Smalltalk-to-Common Lisp

! Many languages translate to Java bytecode
– But don’t seem to go much faster
– Is Java bytecode the problem? Too Java-specific.

! Compiler already has to interoperate with garbage collection
– Conservative GC is unacceptable
– Static compiler are usually too slow to be used dynamically
– Retrofitting GC to an optimizing compiler is usually unsuccessful

! Large rewrites necessary to preserve info
! Even if this worked well, it’s still a lot of hard work

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!32

A new approach: Truffle and Graal
Partial evaluation of self-specializing abstract syntax trees

Optimizing compiler
uses type, profile and

AST structure to
selectively inline and

optimize

Self-specializing
interpreter nodes
gather type and

profile information

Conceived by Thomas Würthinger in 2011
!
Implementation by students and Oracle staff at Johannes Kepler University, Linz

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!33

Specializing interpreter nodes for the common case

a

+

b

VAL eval() { 
 L=left.eval(); R=right.eval();
 switch (type(L)) {  
 case INT: res= L+R;
 if (overflowed(L, R, res)) {...}
 else return BOX(res);  
 case  
}

eval() eval()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!33

Specializing interpreter nodes for the common case

a

+

b

VAL eval() { 
 L=left.eval(); R=right.eval();
 switch (type(L)) {  
 case INT: res= L+R;
 if (overflowed(L, R, res)) {...}
 else return BOX(res);  
 case  
}

eval() eval()
a

int+

b
evalInt() evalInt()

int evalInt() throws Unexpected {  
 try {

return left.evalInt()+right.evalInt();
 } catch (Unexpected u) {
 // revert to slow version } 
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!34

Optimizing compilation driven by specialized ASTs

a

int+

b
evalInt() {
 return val(“a”);}

int evalInt() throws Unexpected {  
 try {

return left.evalInt()+right.evalInt();
 } catch (Unexpected u) {
 // revert to slow version }  
}

evalInt() {
 return val(“b”);}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!34

Optimizing compilation driven by specialized ASTs

a

int+

b
evalInt() {
 return val(“a”);}

int evalInt() throws Unexpected {  
 try {

return left.evalInt()+right.evalInt();
 } catch (Unexpected u) {
 // revert to slow version }  
}

evalInt() {
 return val(“b”);}

inline evalInt() { 
 return val(“a”)+val(“b”);}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!34

Optimizing compilation driven by specialized ASTs

a

int+

b
evalInt() {
 return val(“a”);}

int evalInt() throws Unexpected {  
 try {

return left.evalInt()+right.evalInt();
 } catch (Unexpected u) {
 // revert to slow version }  
}

evalInt() {
 return val(“b”);}

inline evalInt() { 
 return val(“a”)+val(“b”);}

compile
add Ra,Rb,Result

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Truffle Framework

System architecture

your
language

here?

JVM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Truffle Framework

Graal Compiler

System architecture

HotSpot JVM

your
language

here?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Truffle Framework

Graal Compiler

System architecture

HotSpot JVM

your
language

here?

Standalone
Substrate VM or

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Truffle Framework

Graal Compiler

System architecture

HotSpot JVM

your
language

here?

Substrate VM
embeddedor

Standalone
Substrate VM or

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!35

Truffle Framework

Graal Compiler

System architecture

HotSpot JVM

your
language

here?

Substrate VM
embeddedor

Standalone
Substrate VM or

GPU backend for Graal

Click to edit Master text styles

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The language designer’s dilemma—resolved?

!36

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

In C/C++
Still using AST interpreter
Spend a lot of time implementing runtime system, GC, …

Define a bytecode format and write bytecode interpreter

Write a JIT compiler
Improve the garbage collector

Hire a big team of implementors to build an optimizing VM

Current situation

Prototype a new language

Write a “real” VM

People start using it

People complain about performance

Performance is still bad

Massive adoption

Click to edit Master text styles

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Prototype a new language in Java
Parser and language work to build
syntax tree (AST) 
!
Execute using AST interpreter and
optimizing compiler

People start using it

And it is already fast

How it should be

The language designer’s dilemma—resolved?

!36

Parser and language work to build syntax tree (AST)
Execute using AST interpreter

In C/C++
Still using AST interpreter
Spend a lot of time implementing runtime system, GC, …

Define a bytecode format and write bytecode interpreter

Write a JIT compiler
Improve the garbage collector

Hire a big team of implementors to build an optimizing VM

Current situation

Prototype a new language

Write a “real” VM

People start using it

People complain about performance

Performance is still bad

Massive adoption

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!37

Tag elimination for dynamically-typed
languages

! Chambers and Ungar came up with method customization for Self
– Don’t have to inherit machine code for a machine; can customize and

optimize for local behavior (e.g., variable overrides abstract method)
! Idea: customized methods for objects whose fields contain primitives

(int, float)
– Due to Thomas Würthinger (2010)
– Eliminates need for tagging

! although could be a halfway between unboxed and boxed
representations

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!38

Relative speeds of various languages
(as measured by the Computer Language Benchmarks Game, ~1y ago)

3

1

10

100

1000

mean

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!38

Relative speeds of various languages
(as measured by the Computer Language Benchmarks Game, ~1y ago)

3

1

10

100

1000

mean

Goal:

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!39

Peak Performance: Truffle/JavaScript versus V8

Benchmarks	 from	 Octane	 v.1	 suite,	 Hardware:	 Intel	 Core	 i7-‐3770,	 16	 GB	 RAM,	 V8	 version	 3.22.1	 from 
25-‐Sep-‐2013,	 Truffle/JavaScript:	 Running	 on	 Graal/OpenJDK	 changeset	 63c378b7c1c3	 from	 26-‐Oct-‐2013	

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!40

Peak Performance: Truffle/Ruby versus JRuby 1.7.5

0

4

8

12

16

bi
na
ry
-tr
ee
s

fan
nk
uc
h-
re
du
x

m
an
de
lb
ro
t

n-
bo
dy

pi
di
git
s

sp
ec
tr
al-
no
rm

ne
ur
al-
ne
t

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Evidence that it can be done with modest effort
Slide from Chris Seaton, JVM Lang Summit 2013,
describing his Ruby implementation on Truffle

!41

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!42

Summary: reuse our stack, get a fast VM
without a ton of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

1m 1y 10y 100y
Effort (person-years)

Speed

Optimizing compiler

most
scripting

languages

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!42

Summary: reuse our stack, get a fast VM
without a ton of work

1x

10x

100x HotSpot

Simple JIT
Inlining compiler

1m 1y 10y 100y
Effort (person-years)

Speed

Optimizing compiler

most
scripting

languages

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!43

For more information

An Intermediate Representation for Speculative Optimizations in a
Dynamic Compiler, Mon@4.00, "Regency B" (VMIL workshop)

How the Graal IR is good for optimizing Java code 

ZipPy on Truffle: A Fast and Simple Implementation of Python,
Demo, Wed@11.15, “Vision” room

A Truffle deep dive
One VM to Rule Them All — Onward! paper, Thu @ 10.30,
Cosmopolitan B

Full paper on Truffle: http://dx.doi.org/10.1145/2509578.2509581

So you want to be an industrial researcher? SPLASH-I, Tue @ 1pm

http://openjdk.java.net/projects/graal/
https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations
graal-dev@openjdk.java.net

mailto:Mon@4.00
http://splashcon.org/2013/program/demonstrations/996-zippy-on-truffle-a-fast-and-simple-implementation-of-python
mailto:Wed@11.15
http://openjdk.java.net/projects/graal/
https://wiki.openjdk.java.net/display/Graal/Publications+and+Presentations
mailto:graal-dev@openjdk.java.net

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.!44

Oracle Labs
Laurent Daynès
Erik Eckstein
Michael Haupt
Peter Kessler
Christos Kotselidis
David Leibs
Roland Schatz
Doug Simon
Michael Van De Vanter
Christian Wimmer
Christian Wirth
Mario Wolczko
Thomas Würthinger
Laura Hill (Manager)

JKU Linz
Prof. Hanspeter Mössenböck
Gilles Duboscq
Matthias Grimmer
Christian Häubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Lukas Stadler
Bernhard Urban
Andreas Wöß !!
!
!

Acknowledgments

Interns
Danilo Ansaloni
Daniele Bonetta
Shams Imam
Stephen Kell
Gregor Richards
Rifat Shariyar

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj  
Lei Zhao !
University of California,
Irvine
Prof. Michael Franz
Codrut Stancu
Gulfem Savrun Yeniceri
Wei Zhang !
T. U. Dortmund
Prof. Peter Marwedel
Ingo Korb
Helena Kotthaus !
University of California,
Davis 
Prof. Duncan Temple Lang
Nicholas Ulle
 

University of Manchester
Chris Seaton !
University of Edinburgh
Christophe Dubach
Juan José Fumero Alfonso
Toomas Remmelg
Ranjeet Singh !
LaBRI
Floréal Morandat 

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12!45

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 12!46

